Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20237578

ABSTRACT

The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Pandemics , COVID-19/prevention & control , Vaccinia virus , Vaccination/methods , Antibodies, Viral , Immunity, Cellular , Immunity, Humoral
2.
Emerging Infectious Diseases ; 29(6):1236-1239, 2023.
Article in English | Academic Search Complete | ID: covidwho-2324926

ABSTRACT

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)--specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV--specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection. [ FROM AUTHOR] Copyright of Emerging Infectious Diseases is the property of Centers for Disease Control & Prevention (CDC) and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Article in English | MEDLINE | ID: covidwho-2324925

ABSTRACT

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , T-Lymphocytes , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antibodies, Viral , Vaccinia virus , Vaccination
4.
Med Microbiol Immunol ; 212(2): 123-124, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2291841

Subject(s)
Virus Diseases , Humans
5.
Med Microbiol Immunol ; 2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-2293557

ABSTRACT

The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.

6.
J Clin Invest ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2089016

ABSTRACT

The SARS-CoV-2 spike (S) glycoprotein is synthesized as large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/2 cleavage site and K986→P and V987→P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of S broadly reactive antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.

7.
Nat Commun ; 13(1): 4182, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947341

ABSTRACT

Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate the safety (primary objective) and immunogenicity (secondary and exploratory objectives: magnitude and characterization of vaccine-induced humoral responses) of a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. MVA-MERS-S booster vaccination is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n = 1) and the S2 subunit (n = 3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. Trial registration: Clinicaltrials.gov NCT03615911.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Vaccination
8.
Vaccines (Basel) ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1810347

ABSTRACT

The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014-2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.

9.
Front Immunol ; 12: 772240, 2021.
Article in English | MEDLINE | ID: covidwho-1551510

ABSTRACT

Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.


Subject(s)
Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Genetic Vectors , Immunization, Secondary , Immunoglobulin A/blood , Immunoglobulin G/blood , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Th1 Cells/immunology , Vaccination , Vaccines, Subunit/immunology , Vaccinia virus/immunology , Vero Cells , Viral Load/immunology
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1284760

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 Vaccines/standards , Dose-Response Relationship, Immunologic , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccination , Vaccinia virus
11.
Emerg Infect Dis ; 27(7): 1974-1976, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278359

ABSTRACT

We report a therapy cat in a nursing home in Germany infected with severe acute respiratory syndrome coronavirus 2 during a cluster outbreak in the home residents. Although we confirmed prolonged presence of virus RNA in the asymptomatic cat, genome sequencing showed no further role of the cat in human infections on site.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , Disease Outbreaks , Germany , Humans , RNA, Viral/genetics , Retirement
12.
Lancet Infect Dis ; 20(7): 827-838, 2020 07.
Article in English | MEDLINE | ID: covidwho-1103186

ABSTRACT

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a respiratory disease with a case fatality rate of up to 35%. Given its potential to cause a public health emergency and the absence of efficacious drugs or vaccines, MERS is one of the WHO priority diseases warranting urgent research and development of countermeasures. We aimed to assess safety and tolerability of an anti-MERS-CoV modified vaccinia virus Ankara (MVA)-based vaccine candidate that expresses the MERS-CoV spike glycoprotein, MVA-MERS-S, in healthy adults. METHODS: This open-label, phase 1 trial was done at the University Medical Center Hamburg-Eppendorf (Hamburg, Germany). Participants were healthy men and women aged 18-55 years with no clinically significant health problems as determined during medical history and physical examination, a body-mass index of 18·5-30·0 kg/m2 and weight of more than 50 kg at screening, and a negative pregnancy test for women. A key exclusion criterion was a previous MVA vaccination. For the prime immunisation, participants received doses of 1 × 107 plaque-forming unit (PFU; low-dose group) or 1 × 108 PFU (high-dose group) MVA-MERS-S intramuscularly. A second identical dose was administered intramuscularly as a booster immunisation 28 days after first injection. As a control group for immunogenicity analyses, blood samples were drawn at identical study timepoints from six healthy adults, who did not receive any injections. The primary objectives of the study were safety and tolerability of the two dosage levels and reactogenicity after administration. Immunogenicity was assessed as a secondary endpoint by ELISA and neutralisation tests. T-cell immunity was evaluated by interferon-γ-linked enzyme-linked immune absorbent spot assay. All participants who were vaccinated at least once were included in the safety analysis. Immunogenicity was analysed in the participants who completed 6 months of follow-up. This trial is registered with ClinicalTrials.gov, NCT03615911, and EudraCT, 2014-003195-23 FINDINGS: From Dec 17, 2017, to June 5, 2018, 26 participants (14 in the low-dose group and 12 in the high-dose group) were enrolled and received the first dose of the vaccine according to their group allocation. Of these, 23 participants (12 in the low-dose group and 11 in the high-dose group) received a second dose of MVA-MERS-S according to their group allocation after a 28-day interval and completed follow-up. Homologous prime-boost immunisation with MVA-MERS-S revealed a benign safety profile with only transient mild-to-moderate reactogenicity. Participants had no severe or serious adverse events. 67 vaccine-related adverse events were reported in ten (71%) of 14 participants in the low-dose group, and 111 were reported in ten (83%) of 12 participants in the high-dose group. Solicited local reactions were the most common adverse events: pain was observed in 17 (65%; seven in the low-dose group vs ten in the high-dose group) participants, swelling in ten (38%; two vs eight) participants, and induration in ten (38%; one vs nine) participants. Headaches (observed in seven participants in the low-dose group vs nine in the high-dose group) and fatigue or malaise (ten vs seven participants) were the most common solicited systemic adverse events. All adverse events resolved swiftly (within 1-3 days) and without sequelae. Following booster immunisation, nine (75%) of 12 participants in the low-dose group and 11 (100%) participants in the high-dose group showed seroconversion using a MERS-CoV S1 ELISA at any timepoint during the study. Binding antibody titres correlated with MERS-CoV-specific neutralising antibodies (Spearman's correlation r=0·86 [95% CI 0·6960-0·9427], p=0·0001). MERS-CoV spike-specific T-cell responses were detected in ten (83%) of 12 immunised participants in the low-dose group and ten (91%) of 11 immunised participants in the high-dose group. INTERPRETATION: Vaccination with MVA-MERS-S had a favourable safety profile without serious or severe adverse events. Homologous prime-boost immunisation induced humoral and cell-mediated responses against MERS-CoV. A dose-effect relationship was demonstrated for reactogenicity, but not for vaccine-induced immune responses. The data presented here support further clinical testing of MVA-MERS-S in larger cohorts to advance MERS vaccine development. FUNDING: German Center for Infection Research.


Subject(s)
Coronavirus Infections/immunology , Dose-Response Relationship, Immunologic , Immunogenicity, Vaccine , Vaccinia virus/genetics , Viral Vaccines/immunology , Adult , Antibodies, Viral/blood , Coronavirus Infections/genetics , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors , Germany , Humans , Immunization, Secondary , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Vaccines, DNA , Young Adult
13.
Transbound Emerg Dis ; 68(4): 1779-1785, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-944802

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are evaluated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was evaluated using 59 sera of infected or vaccinated animals, including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% were achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Rodent Diseases , Animals , Antibodies, Viral , COVID-19/veterinary , Cat Diseases/virology , Cats , Cattle , Cattle Diseases/virology , Chickens , Enzyme-Linked Immunosorbent Assay/veterinary , Ferrets , Humans , Mice , Rabbits , Rodent Diseases/virology , SARS-CoV-2 , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL